Learn

This page contains materials for courses on R and data science that are taught at the University of Konstanz:unikn_logo

Data science for psychologists (ds4psy)

Taught at the University of Konstanz (Summer 2019)

Course documents

Textbook

  • Wickham, H., & Grolemund, G. (2017).  R for data science: Import, tidy, transform, visualize, and model data.  Sebastopol, Canada: O’Reilly Media, Inc.
    [Available online at http://r4ds.had.co.nz.]

Basic data and decision analysis in R

Taught at the University of Konstanz (Winter 2017/2018)

Course documents

Weekly programming assignments (WPAs)

  • WPA00: Seeing what R can do (Oct. 23, 2017) | Answers (Oct. 26, 2017)
  • WPA01: Basics, scalars and vectors (Oct. 30, 2017) | Answers (Nov. 02, 2017)
  • WPA02: Vector functions, indexing vectors (Nov. 06, 2017) | Answers (Nov. 09, 2017)
  • WPA03: Matrices and data frames, managing the workspace (Nov. 13, 2017) | Answers (Nov. 16, 2017)
  • WPA04: Advanced data frame manipulation (Nov. 20, 2017) | Answers (Nov. 23, 2017)
  • WPA05: Graphics (Nov. 27, 2017) | Answers (Nov. 30, 2017)
  • WPA06: Statistics 1:   1- and 2-sample hypothesis testing  (Dec. 04, 2017) | Answers (Dec. 07, 2017)
  • WPA07: Statistics 2:  ANOVAs (Dec. 11, 2017) | Answers (Dec. 14, 2017)
  • WPA08: Statistics 3:  Linear Regression (Dec. 18, 2017) | Answers (Dec. 21, 2017)
  • WPA09: Writing functions and loops (Jan. 08, 2018) | Answers (Jan. 11, 2018)
  • WPA10: Data cleaning and wrangling (Jan. 15, 2018) | Answers (Jan, 18, 2018)
  • WPA11: Using FFTrees for constructing and evaluating FFTs (Jan. 22, 2018)

Templates